\
) |
P 9

,
y

N
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

ya \

A
A

/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

A Dynamical Theory of Structured Solids. | Basic
Developments

P. M. Naghdi and A. R. Srinivasa

Phil. Trans. R. Soc. Lond. A 1993 345, 425-458
doi: 10.1098/rsta.1993.0140

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1993 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;345/1677/425&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/345/1677/425.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

A dynamical theory of structured solids. I
Basic developments
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= Based on the well-accepted notion of a Bravais lattice of a crystal at the atomic scale
§ P and with particular reference to inelastic behaviour of materials, this paper is
olm concerned with the construction of a macroscopic dynamical theory of solids which
M= incorporates the effect of the presence of the atoms and their arrangements. The
- 5 theory incorporates a wide variety of microstructural processes occurring at various
T 0O physical scales and has a range approaching the atomic scale. These processes include
— the effect of the motion of individual dislocations, which are modeled here as

continuous distributions at the macroscopic scale.
The formulation of the basic theory, apart from the kinematical and kinetical
variables employed in classical continuum mechanics, utilizes a triad of independent
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426 P. M. Naghdi and A. R. Srinivasa

vector-valued variables — called directors — (or an equivalent tensor-valued variable)
which represent the lattice vectors and are determined by additional momentum-like
balance laws associated with the rate of change of lattice deformation in the spirit of
a Cosserat (or directed) continuum. A suitable composition of the triad of directors
and the ordinary deformation gradient is identified as a measure of permanent or
plastic deformation, the referential gradient of which plays a significant role in the
kinematics of lattice defects. In particular, a uniquely defined skew-symmetric part
of the gradient of plastic deformation is identified as a measure of the density of
dislocations in the crystal. The additional momentume-like balance laws associated
with the rate of lattice deformation include the effect of forces necessary to maintain
the motion of dislocations, as well as the inertia effects on the microscopic and
submicroscopic scales arising from the director fields. The basic theoretical
developments also provide important clarifications pertaining to the structure of the
constitutive response functions for both viscoplasticity and (the more usual) rate-
independent plasticity.

1. Introduction and background

The concept of a crystal based on a Bravais lattice at the atomic scale is used as a
basic premise in this paper and a companion one (Part II under the same title) to
present a general (macroscopic) dynamical theory of structured solids. The basic
theory in Part I is applicable to a wide range of material behaviour, including that
of elastic-plastic and elastic-viscoplastic metals. In particular, in the present Part I,
attention is focused on the detailed development of constitutive equations for crystal
plasticity in the presence of continuously distributed dislocations. The term crystal
plasticity refers to a particular mode of permanent deformation, say in a single
crystal, caused by the movements of the atoms of a crystal with respect to each other
that give rise to a rearrangement of their long-range ordering. This movement of the
atoms is greatly influenced by the presence of certain imperfections in the ordering
of the atoms. These imperfections — called dislocations — can propagate through the
crystal, reducing the forces required in maintaining the motion of the atoms relative
to each other, and thus facilitating the occurrence of permanent deformation in the
crystal.

For certain applications, it is convenient to ignore the details of the atomic nature
of dislocations in a crystal and to regard an array of similar dislocations as being
distributed uniformly throughout the medium. Using this notion of ‘continuous
distribution of dislocations’, the kinematics of a crystal lattice have been studied by
Eshelby (1956), Bilby (1960), Kondo (1952, 1964) and Kroner (1960), among others.
However, no satisfactory extension of such studies to incorporate the effects of
dislocations explicitly in the characterization of plastic deformation of crystals and
their hardening characteristics on a macroscopic scale has been given so far.
Experience of the past decade or so suggests that the goal for construction of a
satisfactory dynamical theory may be achieved by utilizing a judicious choice of
augmented variables via a Cosserat (or directed) continuum. Indeed, some support
for such an approach has been mentioned in the literature on dislocations (see, for
example, the quotations (), (b), (¢) from Nabarro 1987)%. Given this background, in
addition to the wvariables used in classical continuum mechanics, a triad of

T Direct quotations from Nabarro (1987) and one other relevant reference are listed in Appendix A.

Phil. Trans. R. Soc. Lond. A (1993)
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A dynamical theory of structured solids. I 427

independent vector-valued variables — called directors —is used to represent the
effect of lattice vectors (see (2.1)) and are determined by additional momentum-like
balance laws for the rate of change of the director fields.

Background information concerning Cosserat or ‘directed’ continua, which are
endowed with one or more directors as additional kinematical variables, can be found
in Green et al. (1965), Truesdell & Noll (1965), and Naghdi (1972, 1982). It should be
remarked, however, that due to the differences in physical structure of the
phenomena considered, the development of the dynamical theory with the use of a
triad of directors in this paper is substantially different than those formulated in
previous works. Despite this, mention may be made of a striking mathematical
similarity between the basic dynamical equations (in direct notation) for shell-like
bodies given in Naghdi (1982, §8) and those developed in §4 of the present paper.

(@) A summary description of the major results obtained

A general idea of the scope of the paper can be had from a list of contents preceding
the abstract. Here we highlight some of the main results. After presenting in §2 a
brief overview of microscopic and submicroscopic features of a crystal lattice in the
context of inelastic behaviour, a triad of directors is introduced to represent the
effect of lattice vectors at the macroscopic scale. Kinematics of the lattice structure
in the macroscopic theory, based on continuous distributions of dislocations, are
discussed in some detail in §3 and include:

1. The identification of a measure of plastic deformation tensor G, (see (3.8))
which is the composition of the inverse of the lattice deformation tensor ,F and the
deformation gradient F. This identification is accomplished by using the notion of a
mechanically reversible motion associated with an intermediate configuration which
is defined (locally) in terms of G,. This manner of introducing an intermediate
configuration is in contrast to a procedure adopted during the past 25 years in some
of the literature on plasticity, where a multiplicative decomposition of Fis used after
first defining a ‘stress-free’ intermediate configuration; in this connection, see §4 of
the review article by Naghdi (1990).

2. The stretch and rotation associated with the lattice deformation tensor ,F and
the plastic deformation tensor G, as well as a derived equation relating G, to the
plastic strain E (see (3.27)).

3. A kinematical development resulting in the relationship between the gradient
of G,, the Burgers vector and the dislocation density per unit area in the reference
configuration. This development differs from those of Eshelby (1956) and Bilby
(1960) who have defined the dislocation density in terms of elastic lattice
deformations, while the present development with the use of the gradient of G,
provides a connection between changes in dislocation density to processes involving
plastic deformation. In this connection, it should be noted that while formal
compositions similar to the tensor G, and its relationship to the dislocation density
have been proposed in a number of papers beginning with Bilby et al. (1957), the
identification of the tensor G, in the present paper involves the notion of mechanical
reversibility and is complete only after it is shown (with the use of the balance laws
and constitutive equations in §§4-6) that processes in which the rate of G, # 0 are
irreversible.

Some of the main results in the remainder of the paper (§§4-6), which are
concerned with the balance laws and the construction of general constitutive
equations for structured solids, are:

Phil. Trans. R. Soc. Lond. A (1993)
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428 P. M. Naghdv and A. R. Srinivasa

4. The statement of the additional momentum-like balance laws (see (4.11)) which
include the effect of inertia associated with plastic deformation. This effect plays a
significant role in the subsequent development of the dynamical theory for both
viscoplasticity and (the more usual) rate-independent plasticity.

5. Development of a general constrained theory for materials possessing an elastic
range and the manner that the constraint gives rise to a yield function @ (see (5.9)).
This function delineates the elastic range; and, in turn, leads to the introduction of
yield function ¢ in the space of the basic kinematical variables corresponding to @.

6. An expression for the rate of energy dissipation § (see (6.13)) — derived in the
context of the constrained theory —involves two of the main constitutive response
functions, one of which is the constitutive tensor response function K representing
the effect of the intrinsic director force (or the intrinsic lattice force) per unit volume
in the reference configuration.

7. Subsequent use of the expression for the rate of energy dissipation allows
(without any additional assumption) to express the constitutive response function
K as a linear sum of three response functions in (6.16), namely K,, K, and K,. The
first of these, i.e. the tensor function K;, depends only on the klnematlcal varlables
U defined by (5.6), and is entirely independent of rate quantities; the second, i.e. K,
depends on % and a unit tensor representing the direction p of the rate of plastic
deformation ; and the third, i.e. K, depends on %, as well as both the unit tensor p
and the magnitude y of the rate of plastic deformation.

8. A geometrical interpretation of the response function K, leading to the result
that the values of K, lie on a hypersurface represented by & (see (6.23)). The surface
D, is referred to as the loading surface since the response function K, must always
lie on this surface during processes that give rise to plastic deformations.

9. The identification of the response function K, as a viscoplastic response; and
K,, which when inverted, results in an equation analogous to the constitutive
equation for the plastic strain rate in the usual formulation of elastic-plastic
behaviour.

10. A discussion of the continuity conditions leading to the effect that the two
hypersurfaces @ and @, become coincident if either K in (6.17) is a continuous
function of time or if the inertia term in the balance equation (4.13), vanishes.

(b) Notation and mathematical preliminaries

We close this section with a short glossary of notations and some mathematical
terminology. Any linear mapping from V, the three-dimensional translation vector
space associated with the euclidean point space &, into V will be called a second-order
tensor. The trace and determinant functions of second-order tensors will be denoted,
respectively, by tr and det. The transpose of the second-order tensor T will be
denoted by T7, its inverse if it exists by T~! and the inverse of its transpose (i.e. (G;1)")
by G,". The usual inner product on V is written as a-b for any two vectors a, be V
and the (induced) norm, or magnitude, of a is given by |a|| = (a'@):. An inner
product for second-order tensors A, B is defined by A4°B=tr(A™B) with the
associated norm ||4|| = (4" A) The tensor product a ® b of any two vectors a, be V
is the second-order tensor defined by (a ® b) v = (b-v) a for every vector v and the
identity tensor is denoted by I. Generally, direct tensor notation is used in the paper
and summation over repeated subscript and superscript is understood as, for
example, in (3.6), ,. The notations ‘grad’ and ‘div’ stand, respectively, for the
gradient and divergence operators with respect to reference position X. Also, a

Phil. Trans. R. Soc. Lond. A (1993)
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A dynamical theory of structured solids. I 429

superposed dot signifies material time differentiation and a comma following a
subscript indicates partial differentiation. We denote the basis vectors in the
reference and the current configurations by {E,} and {e,}, respectively, where both
subscripts have the range 4 =1,2,3 and ¢=1,2,3. Occasionally, we find it
convenient to record components of various expressions with respect to a fixed
orthonormal basis {E,} for vectors and tensor fields defined on the reference
configuration, or to speak of components of tensor fields such as &, of I referred to
the basis E, ® E; and F;, (or z; ,) referred to basis e, ® E .

A notation of the type Z[b] signifies operation of a linear operator & such as a
second-order (fourth-order) tensor acting on a first-order (second-order) tensor.
Thus, if A = Ay, E, ® E, is a second-order tensor and if b = b, E is a vector, we
write A[b) to mean (4. b, ) Eg. Similarly, if C=Cy,yvnEx @ E, QE,Q@E, is a
fourth order tensor, we write C[A] to mean Oy Ay Ex @ E}.

Finally, a comment may be made about the notation for certain fields which occur
in the referential (lagrangian) formulation of the dynamical equations of §4. A
subscript R is attached to certain symbols (such as gk, ym* and g K, ;M in (4.1), ,)
that define kinetical entities over the reference configuration to avoid confusion with
the fairly standard use of the same symbols without the subscript R in a
corresponding spatial (eulerian) formulation of a Cosserat continuum.

2. Background remarks on microscopic and submicroscopic descriptions
of the crystal lattice and dislocations

The macroscopic theory of the inelastic behaviour of crystals constructed in §§3
and 4 and utilized in the remainder of the paper uses three additional (independent)
kinematical variables denoted by d, (4 = 1,2, 3), which characterize certain features
of the crystal lattice structure on the microscopic and submicroscopic levels. As will
become clear in the subsequent sections, explicit identification of these macroscopic
variables with appropriate microscopic and submicroscopic features is essential for
motivating the forms of the constitutive equations of the macroscopic responses of
the medium, as well as for physically meaningful interpretation of the macroscopic
results. Preparatory to this objective and for the sake of clarity, we focus here on
some background remarks pertinent to inelastic deformation of a single crystal in
terms of the microscopic and submicroscopic descriptions of the material.

When a single crystal undergoes a motion which results in a permanent
deformation (on the macroscopic scale) such as elastic-plastic or elastic-viscoplastic,
several microstructural features of the motion can be seen with increasing detail at
various progressively finer scales of motion. Thus, while the crystal appears quite
smooth on the macroscale, the deformation is seen to be composed of many closely
spaced steps at a magnification of about 150 x (see Guinier & Jullien 1989, p. 193,
fig. 4.12). As the magnification is increased further to about 35000 x , first slip bands
and then dislocation clusters begin to appear (see Guinier 1984, p. 113, fig. 5.10).
Even at this scale the atomic lattice is not visible, even though it may be inferred
from other observations. The cores of dislocations and the lattice distortions can be
seen at levels of about 10® x magnification (see Guinier 1984, p. 122, fig. 5.9).

It should be emphasized that the aim of the present paper is the development of
a (macroscopic) theory based on a continuous distribution of dislocations which can
be observed in the range of magnification of roughly approaching 10° x, and thus

Phil. Trans. R. Soc. Lond. A (1993)
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ignore a more detailed feature of the material behaviour such as the exact
arrangement of the core of dislocation observed only at approximately 10%x
magnification. Hence, in the present context, any description of material behaviour
at a scale approaching the atomic level serves only as a ‘background’ model for the
(macroscopic) continuum theory. By this we mean that while certain features of the
dislocation motion at the submicroscopic level can be represented effectively in the
macroscopic theory, one is not interested in every detail of the randomly distributed
dislocation motion at the atomic level, i.e. one is not interested in the location of
every atom for all times.

(a) Crystal deformations at the microscopic and submicroscopic scales

It is convenient at this point to introduce some notations pertaining to the
microscopic description of the body. A fixed reference configuration g of the body
2 bounded by 0% occupies a region Zg bounded by a closed surface 02¢ ; and in the
configuration x* at time ¢, the body occupies a region £* bounded by a closed surface
0Z*. (The use of the asterisk attached to the various symbols is for later convenience.
The corresponding symbols without the asterisk are reserved for different
designations to be introduced in §3.) Any arbitrary material volume &* of 4 in the
two configurations kf and x* occupy, respectively, the regions 2} (= %) bounded
by the closed surface 02¢ and 2* (< #*) bounded by a closed surface 02*. Any
microscopic material point (or particle) X* within &* in the configurations x* and
k¢ is identified by the position vectors x* and X*, respectively. We further designate
the location of the centre of mass of & * in the current and reference configurations
by x and X, respectively. The adoption of these designations here are in anticipation
of later identification of centre of mass of * in x¥* and ¥ (in §3) with the position
vectors x and X of a material point in the macroscopic theory. (This, of course, means
that the entire part & * (on the microscopic scale) is associated with a single material
point (or particle) X on the macroscopic scale.)

We represent the periodic arrangement of the crystal lattice at each particle X* of
* by means of vectors d% and D% (4 =1,2,3) in the configurations xk* and &,
respectively. We refer to these vectors as lattice vectors and stipulate further that the
lattice vectors are non-coplanar at all times. Next, we introduce the vectors d, and
D, through the formulae

1 1
=ﬁfg*djdv, D, =V_(’," g‘:DjdV A4=1,2,3), (2.1)

d,
where V* and V§ are the volumes of &* in the current and reference configurations,
respectively. The vectors d, and D, in (2.1), which represent the averaged or
‘smeared’ lattice structure of the crystal, are in general different from the lattice
vectors and will be referred to as the lattice directors. Further, the sets of vectors {d,,
d,,d;} and {D,, D,, D,} are each assumed to be non-coplanar. This implies that the
scalar triple product for each set is non-zero, i.e.

[d,d,d;] # 0, (2.2)

with a similar condition holding for the vectors D, (4 = 1,2, 3). This permits us to
define the reciprocal vectors (or dual vectors) d4 and D4, through the relations

dE-d, =D D, =08 (2.3)
Phil. Trans. R. Soc. Lond. A (1993)
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where the symbol 85 stands for the Kronecker delta. The lattice vectors (and hence
the lattice directors) have the physical dimensions of length so that the dual vectors
d® and D® have the physical dimensions of 1/length.

3. Kinematics of the lattice structure in the macroscopic theory

In the usual macroscopic description of materials, a body % bounded by a surface
0% is regarded as consisting of a set of material points (or particles) X. Here, in the
context of directed media, let each material point X be endowed with additional
kinematical variables represented by a triad of independent vector fields called
directors. Remembering the background information at the microscopic scale
indicated in §2, the directors may be regarded as representing an equivalent lattice
structure of the crystal on the macroscopic scale. Thus, in a fixed reference
configuration x, of 4, let the material point X and the directors at X be identified,
respectively, by the position vector X and the values of the director triads D, =
D, (X) (A=1,2,3); and, similarly, denote the corresponding quantities in the
current configuration x at time ¢t by the position vector x and the director triads d,
at x (4 =1,2,3). (It is understood that the symbols such as x,, ¥ (without an
asterisk) in this section are associated with configurations in the macroscopic
description of the motion of %.) We define a set of two sufficiently smooth vector
functions ¥ and &, (4 =1,2,3), which respectively assign the place x and the
director triads d, to each material point in the current configuration x of # at time
t, ie.

x=xXt), d,=D,Dpt:X)=D,X,t) (A4,B=1,23). (3.1)
The functional form of 9, in the first of (3.1), is intended to emphasize its explicit
dependence on X. The set of two functions {y, 2 ,} will be referred to as a process. (By
a process we mean that the functions y and &, must be determined from relevant
balance laws and must be also compatible with appropriate constitutive equations.)
The function y is called a motion and an explicit physically relevant identification of
the vector functions & , will be made presently. We assume that the triad of directors
is non-coplanar so that we may introduce the reciprocal director triads D* and 44
satisfying the relations (2.3). The deformation gradient F and its determinant are
defined by
F=0y/0X, J=detF. (3.2)

We assume that (3.1),;, but not (3.1),, is invertible for a fixed value of ¢ so that the
jacobian of transformation associated with (3.1); does not vanish; and for
definiteness, we further stipulate that J > 0.

The ordinary particle velocity v and director velocities w, are defined by

v=x, wy=d, (4=1,23), (3.3)

where a superposed dot denotes material time differentiation with respect to ¢ holding
X fixed.

We also recall the well-known expression that relates a line element dx in the
current, configuration k to its image dX in the fixed reference configuration x, and
similarly that which relates the time derivative of dx in x to its image in x,, i.e.

dx = FdX, dx= Ldx = FdX, (3.4)
where F=LF, L=0v/x. (3.5)
Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

, \

a
fA \

‘A

/an \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

432 P. M. Naghdi and A. R. Srinivasa

(a) Identification of a measure of plastic deformation

Recalling the background discussion in §2 concerning the lattice vectors and the
lattice directors, we now proceed to introduce a (dimensionless) two-point tensor field
denoted by ,F and called the lattice deformation tensor which is defined as the tensor
product of the lattice directors in x defined by (2.1), with their duals in &, defined by
(2.1),. This lattice deformation tensor ,F, its inverse and its determinant are given by
the formulae

JF=d,®D* ,F'=D,®d* ,J=det[F|#0, ’ (3.6)
and note that from (3.6) follow the expressions
d,=,D,, D,=,F"d,
d*=(,FY'D4 D*=,F'd* (A= 1,2,3),}

where summation over the repeated subscript and superscript 4 in (3.6) is
understood. It should be clear that the role of the lattice deformation tensor ,F
between the director triads d, and D, in (3.7) is akin to that of the deformation
gradient F between dx and dX in (3.4),. Moreover, it is important to note that while
(3.4), is integrable, (3.7), is not ; the latter, of course, implies that ,F is not integrable.

Before the identification of a measure of plastic (or inelastic) deformation, for
clarity’s sake, we need to dispose of some additional preliminaries. Thus, as indicated
earlier, we identify the position x with the centre of mass of a microscopic material
region and the vector triad d, with a mean lattice structure located at x (see
equations (2.1)). Further, we recall that the usual elasticity theory is considered to
be reversible in the sense that, following any motion or deformation from a reference
state, the material can always be returned to its reference state simply by reversing
the motion; the reference state may, of course, be taken as the initial state. Recalling
the notion of a process introduced following (3.1), we now consider a special process
in which the lattice directors behave as material line elements. It then follows that
for such a process the vector functions &, are determined by the motion y. Further,
the lattice directors along with all the macroscopic particles in the body may be
returned to their reference state simply by reversing the motion y of the body.
Consider now a special cycle consisting of the special process and its reverse. We
assume that for all such cycles during which the lattice directors behave as material
line elements, the external work done on the body is zero. It then follows that all
such processes are mechanically reversible. (A full discussion of such mechanically
reversible processes requires consideration of the complete dynamical theory,
including the constitutive equations. For this reason we postpone further remarks on
this point until §6.)

Any arbitrary process of the crystal is not necessarily reversible on the microscopic
or submicroscopic scale. This is because the relative positions of the microscopic
particles may be altered by inelastic processes and hence the lattice structure does
not return to its original state upon reversal of the macroscopic deformation. To
elaborate, consider a typical process which, on the macroscopic scale, takes a
material point (or particle) to its corresponding point x in the current configuration
K of the body at time ¢. Such a process is not necessarily reversible. However, it is
possible to associate with a given arbitrary process a reversible process resulting in
the same place x in x such that the lattice directors behave as material line elements
and the tensor ,F in (3.7) is the same as the deformation gradient F. Clearly the

(3.7)

Phil. Trans. R. Soc. Lond. A (1993)
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lengths and orientations of the lattice directors at the same material point will be
different for irreversible and reversible processes. This suggests that the difference
between the functions F and ,F may be used as a measure of permanent deformation
in a crystal and leads us to introduce a tensor G, through the relation

G,= ,F'F. (3.8)

In what follows, the tensor G, will be referred to as the plastic deformation in
anticipation of its identification (or prescription) based on certain results to be
established in §6, where it is shown that the processes for which Gp #0 are
dissipative and hence irreversible.

It may be emphasized that in defining (3.8) we have appealed to the notion of a
reversible process discussed in the penultimate paragraph. This definition of G, can
now be utilized to define a unique ‘local’ intermediate configuration. But before
embarking on this, for clarity’s sake it is important to indicate that the term ‘local’
is used here to mean an infinitesimal neighbourhood, i.e. the tangent space at a given
material point of the body manifold. (This usage of the term ‘local’, which is common
throughout the literature in continuum mechanics, is in contrast to the modern usage
of the same word in mathematics where the term ‘local’ is used to mean a finite (not
necessarily small) neighbourhood of a point.) Keeping this background in mind, we
now define a unique local intermediate configuration by means of the following
procedure : From the present configuration #, we map the body into an intermediate
configuration £ by means of a local process such that at every material point (1) the
lattice directors behave as material line elements, and (2) the lattice directors d, in
& coincide with the lattice directors D, in the reference configuration x,.

Such a configuration can be achieved locally for every material point by means of
a deformation tensor ,F ! with respect to the present configuration and we may write

dx = ,F'dx, d,=,F'd, (3.9)

both of which are linear transformations taking a line element dx into dX and the
lattice directors d, into d,. (It should be clear that in the context of the present paper
(3.9); must be viewed as a relation between the infinitesimal displacements dx and
dx, i.e. tangent vectors at the material point x.) Since both dx and d, in (3.9)
transform by ,F!, the requirement (1) is satisfied. Substitution of (3.7), into (3.9),,
at once yields

d,=D,, (3.10)

which meets the requirement (2). This demonstrates the existence of a configuration
K as defined by (1) and (2) above. To show uniqueness, suppose that there exists
another configuration & satisfying (1) and (2) such that d£ # ,F'dx and by
(1) d # ,F1d,. The latter by (3.7), 1mphes that d # D, which contradlets the
requirement (2). This establishes the uniqueness of the procedure for identification of
the intermediate configuration &. (The procedure for the identification of & described
here should not be confused with any multiplicative decomposition associated with
an intermediate stress free configuration introduced in the context of macroscopic
theories of plasticity by other authors. Setting aside the matter of uniqueness for any
such configuration, it may be noted that K as defined by the requirements (1) and (2)
is not necessarily stress free and therefore will be free from any physical difficulties
associated with its existence.) Substituting for the vectors dx and d, in the above
equations (3.9) and (3.10) by means of the relations (3.4), and (3.7),, respectively, we
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arrive at the following representations for the line element dX in terms of the
reference line element d.X:

dx = G,dX. (3.11)

A schematic diagram of the reference, intermediate and current configurations is
shown in figure 1. During the deformation from the configuration x, to &, G, acts
on the material line element dX but not on the vectors D, representing the lattice
structure. It is important to note that & is a collection of tangent spaces, i.e. a
collection of local configurations which do not continuously fit together to form a
global configuration. This is due to the fact that G need not satisfy any integrability
condition, and consequently no position vector can be assigned to &.

It can be seen that the tensor G, introduced above has the following properties:
(i) in the reference configuration ,F = F = I, and hence G, = I; (ii) during a purely
elastic deformation from a reference state, the lattice directors behave as line
elements of ordinary continuum so that ,F=F and G,=1 and hence the
intermediate configuration & coincides with x,; and (iii) it can also be shown that if
further deformation from any configuration is purely elastic, then Gp vanishes (see
(3.14) below).

We continue our discussion of kinematics and proceed to establish an additional
result which justifies the choice (3.8) as a measure of plastic deformation. To this end,
taking the material time derivative of (3.8) we obtain

G,= ,F'F+,F'F=,F'L—F,F")F. (3.12)

In writing (3.12), use has been made of (3.5),, as well as ,F ' ,F=1I and its time
derivative, where I denotes the identity tensor. According to (B 6) of Appendix B,
during elastic processes only the rate of lattice deformation tensor ,F can be related
to ,F by a formula analogous to (3.5),, namely

JF =L,F forreversible processes. (3.13)

Substitution of (3.13) into (3.12), easily reveals that the quantity in parentheses on
the right-hand side of (3.12), vanishes and hence

Gp =0 for reversible processes. (3.14)

Now for any function ¢ (not necessarily a scalar) of the variables (F, ,F), if adopted
as a measure of plastic deformation, the values of the function must remain
unchanged during elastic processes and hence must satisfy the condition

$ =0 for reversible processes. (3.15)
We now prove the following:

Theorem 3.1. Let ¢ be any function of the variables (F, ,F) that satisfies the condition
(3.15) during elastic processes. Then, since G, also satisfies (3.15) by virtue of (3.14), it
s both mecessary and sufficient that ¢ must have the form

¢ =¢(G,). (3.16)
The proof of sufficiency is trivial. Indeed, if ¢ has the form (3.16), then ¢ =
(0¢/0G,) G and by virtue of (3.14) the conditions (3.15) is satisfied. To prove
necessity, We observe that any function ¢ F, /F ) with the help of (3.8) can be
expressed as a different function of (G, F), i

¢ = $(F, ,F) = $(,FG,, F) = §(G,, ,F (3.17)
Phil. Trans. R. Soc. Lond. A (1993)
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Taking the material time derivative of (3.17),, we obtain
- a¢ ¢
0] -G +a F “ F. (3.18)
In view of (3.14) and (3.13), during elastic processes (3.18) becomes
.0
b=2 Lm0 (3.19)

The last result must hold for all non-zero values of (L, ,F); and, moreover, on account
of continuity must also hold for all processes. Hence d¢/0 ,F = 0 and this, in turn,
implies that ¢ must be of the form (3.16) and the proof is complete.

From the above theorem, we conclude that every choice of ¢ as a measure of
plastic deformation must have the form (3.16); and, hence, without ambiguity we
may choose G itself as a measure of plastic deformation as proposed earlier by (3.8).

Since by (B 6), of Appendix B the expression d, = Ld, holds for elastic processes
only, the difference vector (d,—Ld,) at a given instant of time represents the rate
of change of the lattice directors in excess of the rate of change of material line
elements which coincide with them at that instant. With the help of (3.7),, the above
difference vector can be expressed as

d,—Ld,= (,F—L,F)D,. (3.20)

Premultiplying (3.12) with ,F and postmultiplying with G, and after using (3.8), we
obtain an expression which is equal to the negative of the right-hand side of (3.20).
Then by comparing the latter expression with (3.20) we arrive at

d,—Ld,=—(,FG,G;")D,. (3.21)

The above expression for the difference vector (d,— Ld,) plays an important role in
statement of one of the balance laws in §4.

(b) The stretch and rotation associated with the lattice deformation tensor ,F and the
plastic deformation tensor G,

We discuss here the local stretch and rotation associated with the second order
tensors ,F, G, and consider their relationships to the stretch and rotation associated
with the deformation gradient F. According to the polar decomposition theorem (see
Truesdell & Noll 1965), any non-singular (invertible) second order tensor Z can be
uniquely decomposed in the form

Z=RU= VR, (3.22)

where R is a proper orthogonal tensor and both U and V are symmetric positive
definite second-order tensors.

In what follows immediately, we consider only (3.22), and postpone the use of
(3.22), until later in this subsection. Thus, applying (3.22), to each of the three
tensors F, ,F and G, we have

F=RU, ,F=,R,U G,=R,U,, (3.23)
where the tensors R;,R and R, each satisfy conditions of the type
RR"=R'R=1 detR=1, (3.24)
while U, ,U and U, are given by
»G=FF=C, ,U)=,F,F=,C, U!=G,G,=C,. (3.25)
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The second-order tensor C in the first of (3.25) is the familiar right Cauchy-Green
measure of deformation and in the second and third of (3.25) we have introduced
analogous measures for lattice deformation tensor ,C and C, associated with plastic
deformation G,. It is convenient at this point to recall the familiar lagrangian
measure of relative strain E and also for later use to introduce analogous expressions
for the lagrangian lattice strain ,E and the plastic strain E,. These are defined by

Moreover, since ,F = FG™' by (3.8), (3.26), can be expressed as
E =H{(FGH (FG) 1.

After using the indicated transposition, substituting G,* G} G, G, for the identity
tensor and invoking (3.25),, the last expression can be reduced to

E=G,"(E-E,)G;, (3.27)

where in obtaining (3.27) use has also been made of (3.26), ;.

To examine locally the nature of deformation resulting from a process specified by
(3.1); , and to assign suitable interpretations to the various tensorial quantities in
(3.23)—(3.25), we need to consider the action of these tensors on material line
elements and lattice directors at a given material point. Remembering the notations
for the material line elements in configurations x, and x and since the body (here a
crystal) is embedded in a three-dimensional euclidean space, it will suffice to consider
the deformation of three mutually orthogonal line elements dX,, namely

dx, = FdX,, dx,=G,dX, (4=1,23). (3.28)

Let the magnitudes of dX,, dx, and dx, be denoted by dS,,ds, and ds,,
respectively, and introduce the unit vectors M, in the direction of dX,, m, in the
direction of dx, and m, in the direction of dx,. The three unit vectors M ,, without
loss in generality, may be identified with orthonormal basis E, in k. In general, the
line elements d X, undergo both stretch and rotation and the ratios (ds,/sS;, ds,/dS,,
ds,/dS,;) denoted by A, (4 =1,2,3) are called the stretch of the line elements.
Corresponding stretches in the intermediate configuration & (see figure 1) may be
defined analogously. These observations may be summarized as follows:

dX, =E,dS,, dx,=m,ds,, dxX,=m, ds, (nosumon4d),
A% =ds%/dS, =M, - CM,, 2%=ds%/ds% =M, ,CM, (nosum on 4),
(Af)? = ds%/dS% = M, (C,[M,]) (nosum onA4).
(3.29)

Similarly, let the magnitudes of D, d, and d, = D (see (3.10)) be denoted by D4,
d, and d, (= D,), respectively, and introduce the unit vectors ,M, in the direction
of the reference lattice director. Then,

D,=M,D,, di=d,d,=D, (C[D,]) (nosum OnA),} (3.30)
Ay =d4/D% = M, (,C[,M,]) (nosumond4d). '
From (3.29), we have
Ny=sa _dsadsy 5 e (3.31)

ds,  ds,dsS,
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F

D, L
D,

Ko

Figure 1. An exaggerated schematic diagram representing (on the macroscopic scale) the
elastic—plastic deformation of a single crystal, from a reference configuration x, to the current
configuration k. The deformation gradient F takes a material line element in k, to a corresponding
line element in K (see (3.4),), while the lattice deformation tensor ,F takes the lattice vectors in x,
to those in k (see (3.7),). Also shown is the intermediate configuration & depicting the tangent spaces
(at each material point in k) as representing a small neighbourhood on the microscopic scale. These
tangent spaces are obtained by application of G, to the material line elements in x, (see (3.11)).
Ideally the configuration & (which is drawn by dashed lines to emphasize its local nature) should be
superimposed on the current configuration x but these would conceal the nature of physical
processes on the microscopic scale. The arrows represent the lattice vectors, which are identical in
the configurations k, and k. The material points in the intermediate configuration & do not
continuously fit together since G, does not satisfy the compatibility conditions. Although the
lattice vectors in both k, and K are shown to be orthonormal, it should be emphasized that in
general they are functions of the reference position X and need not be orthogonal, although it is
difficult to depict the non-orthogonality in the diagram. Furthermore, neither x, nor & need be
stress-free.

which relates the stretch A, to the stretch in the intermediate configuration and the
plastic stretch due to G,,. It should also be observed that the second-order tensor ,C
plays a dual role: By (3.30), is a measure of the lattice stretch ,A, with respect to the
reference lattice director in k, and by (3.29); is a measure of the purely elastic stretch
A, in the intermediate configuration K (see figure 1).

Our discussion in this subsection so far has dealt with measure of stretch associated
with ,F, G, and F and related formulae. A corresponding analysis of the various
rotation tensors in (3.23) is much more complex ; and, in general, cannot be expected
to yield a simple formula analogous to (3.31). Nevertheless, under a certain
restrictive condition, a relation similar to (3.31) can be deduced and this will be
considered in the rest of this subsection.

Thus, consider the application of (3.22), to the lattice deformation tensor ,F and

write
F=,V,R, ,V=,,UR" (3.32)

where ,V in (3.32), is obtained from (3.22) and the fact that R™* = RT. With the help
of both (3.23), and (3.23),, (3.8) can be used to yield an equation in the form

RUU;'= ,VR*, R*=,RR,. (3.33)
P 2 p

Next, multiplying the left-hand side of (3.33), with I = RTR, we may rewrite (3.33),

as
(RUU;'R™R=,VR*=Z (say). (3.34)
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Now with the assumption that both U and U, have the same eigenvectors, the truth
of the following results can be easily demonstrated (detailed proofs are omitted here):
By writing U and U;" in their canonical form, UU," is symmetric positive definite;
and hence the quantity in parentheses on the left-hand side of (3.34) is also
symmetric positive definite. This conclusion, in turn, implies that the second-order
tensor Z in (3.34) has two left polar decompositions which is impossible by the
uniqueness property of the polar decomposition theorem. It then follows from (3.34)
that we must have R* = R, where R* is defined by (3.33). We may summarize the
conclusion just obtained by the following:

Theorem 3.2. The local rotation tensor R admits a multiplicative decomposition into
a plastic rotation R, and a lattice rotation ,R in the form

R = ,RR,, (3.35)
of and only if U and U, have the same eigenvectors.

It is desirable to include here some remarks concerning the relationship between
rate of deformation tensor D and the spin tensor W arising from F and the
corresponding rate quantities arising from JF and Gp. Thus, analogously to the
expression for the velocity gradient, L = FF (see (3.5),), we define ,L and L, by

L= ,F,F' L =G,G;. (3.36)

From (3.12) we may solve from ,FGDF‘ ! and after observing from (3.8) that F ! =
G,' ,F ! and also using (3.36), and (3.36), we obtain the formula

,FL,,F'=L— L, (3.37)

which relates L, to the difference vector (L—,L). The decomposition of the right-
hand side of (3.37) into the symmetric and skew-symmetric parts in terms of L,
yields

D

W—,W= %{(FLp{F_l_lF_TLT(F}a

b

D—-,D =%{(FLD,F‘1+/F‘TLT,F},} (3.38)
/D and ,W represent the symmetric and skew-symmetric parts of ,L respectively. It
should be clear from (3.38), , that both D—,D and W—,W depend on L, including
its skew-symmetric part. Moreover, in view of the decompositions (3.23) and the
definitions E and ,E given by (3.26), we can readily calculate the expression for E'and
E, namel . .
’ Y E=FDF', ,E=,F,D,F". (3.39)
(¢) The gradient of plastic deformation and the continuous distributions of defects in
a crystal

As was noted in the opening paragraph of §1, the presence of imperfections in a
crystal lattice plays a significant role in the inelastic behaviour of the material. Thus,
for example, in a single crystal under high magnification (say to the order of 10? x
to 10° x ) a large number of imperfections in a crystal lattice, called ‘dislocations’,
can be seen in the form of criss-crossing lines. The motion of these dislocations gives
rise to plastic (or permanent) deformation of the crystal. Moreover, the presence of
arrays of dislocations have been used by .Taylor (1934) to explain the hardening
characteristics of a single crystal subjected to plastic deformation. In view of this
vital role played by dislocations as a consequence of permanent deformation in a
crystal, we need to continue our discussion of the kinematics of the lattice structure
with reference to these dislocations.

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

e

P\
A Y
|

/A \

'\
P

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/an \

a

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A dynamical theory of structured solids. 1 439

Thus we begin by assuming that a single crystal possesses an ideal (or perfect)
undistorted reference configuration, i.e. a reference configuration in which no lattice
imperfection is present. (A configuration of this kind is referred to as a ‘perfect
reference lattice’ by Bilby (1960, p. 337) and ‘comparison crystal’ by Eshelby (1956,
p. 137).) It should be noted that the ideal reference configuration is not necessarily
the same as the initial configuration since most crystals in their natural state possess
some dislocations. In such a reference state, the lattice directors D, coincide with the
basis vectors E, in the reference configuration. Further, since the lattice in its
reference state is perfect and undistorted, there is no spatial gradient of the lattice
directors with respect to X so that D, 5 = 0.

With the above choice of the reference configuration, we are now in a position to
introduce a measure of dislocation density, i.e. the number of dislocation lines crossing
a given area element in the current configuration of a deformed crystal. Following
the procedure adopted by Bilby (1960), we define a Burgers circuit as a closed
sequence of lattice steps (or segments) in a deformed crystal lattice (see the quotation
(c) from Bilby 1960 in Appendix A). The corresponding steps (or segments) in the
reference lattice, called the associated path, can be easily realized with the help of
(3.7), relating the triad of lattice directors of the reference lattice to that of the
current lattice. In general, such a path is not closed, but begins at a lattice starting
point S and ends at a lattice final point I (see, for example, Hirth & Lothe 1982, figs
1.20 and 1.21, pp. 22-23; Guinier 1984, fig. 5.8). We define the positive normal to the
area enclosed by the Burgers circuit by the right-hand screw convention. In this way,
the vector FiS in the reference lattice is called the Burgers vector and is a measure
of the number of dislocation lines treading the circuit.

The description in the above two paragraphs has its roots in regarding a single
crystal as a discrete set of lattice points and a finite number of discrete dislocation
lines. We now proceed to define the Burgers circuit and its associated path for the
continuous lattice structure. For this purpose, consider a simple closed curve €,
referred to as a circuit and parametrized by A€[0, 1], in the current configuration x
at some time ¢,. The position vector of any material point on € is then specified by
x = X(A), and X(0) can be taken as the material point corresponding to the starting
point S (referred to in the preceding paragraph). Further, let the closed curve 4, be
the inverse image of ¥ in the reference configuration x, such that

X=X =77 1(&Q), 1,). (3.40)

By virtue of the invertibility of (3.1);, X = x7(x,¢) and any entity defined as a
function of X can be expressed as a different function of (x,t). Applying this to the
reference director triad D, in k, and to d, = & ,(X,t) in K, we have

=D, (X)=D,[x'(x,t)] = D y(x,1), }
(x,¢)

_ (3.41)
dy=D (X, t) =D, [ (x,1),6] = dy(x,1

The right-hand sides of (3.41), , are the spatial (eulerian) representation of D, and
d,, respectively. When a crystal is undergoing a process, the current lattice dlrectors
d, change with time, but the material derivative of D, is zero.

We may associate with ¢ a different curve %', also parametrized by A, in the
current configuration x such that material points f(/\, t,) on €’ have the following
properties:

dx(A, t))/dA = F1(x,t,) dR(A,t,)/dA,  X(0,t,) = £(0), (3.42)
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where ,F1 is the spatial form of ,F (X, t) given by (3.6),. The ordinary differential
equatlon (3.42),, along with the condltlon (3.42), may be viewed as an initial-value
problem for which a unique solution always exists, provided that ,F and the
tangent vector dxX/dA are sufficiently smooth (see, for example, Cartan 1983 p- 108).
Several properties of ¥” must be noted: (i) The curve 4’ passes through different
material points in x than does €; (ii) in general, €’ is not closed, i.e. X(0) # X(1); and
(iii) since 4’ depends on the choice of the starting point X(0), it is unique only up to
a translation. It then follows that the difference vector ¥(0) —x(1) is unique, depends
only on € by (3.42),, and is independent of the choice of the starting point. We refer
to the curve €’ as the associated path to the circuit €.

Preliminary to the identification of the Burgers circuit, we need to obtain an
explicit analytical relationship between the paths € and €’. To this end, we first
observe that in the context of the continuous lattice structure, the contravariant
components d¥* of the increment dx referred to the lattice directors d, are:

dF4(A, 8,) = dR(A, ) d4(x(A, ), b,). (3.43)

The components d£4 represent the incremental distance travelled along each of the
lattice vectors and hence they are the infinitesimal ‘lattice step’ corresponding to the

‘lattice steps’ in the discrete description of the lattice. Similarly, the components of
dx* of the increment dx along the lattice directors D, on the curve € are

dz4(A, 1) = dx(A, t,)- DA(£QA)) (4 =1,2,3). (3.44)

The components dx“ are the incremental lattice steps performed in the reference
lattice. In writing (3.41)—(3.44), for clarity’s sake we have exhibited the dependence
of X, X (and their components) on their arguments to emphasize the curve on which
these functions are evaluated. In the rest of this subsection, however, we suppress the
arguments of these functions and their derivatives without ambiguity. From the
relation (3.42) and (3.7),, we have

dx4 = F1d% D4 = df- ((F 1" D* = d&-d*
and after recalling (3.43) we deduce the important result that
dx? = dx4, (3.45)

i.e. the same number of lattice steps are performed along the curve  and €’ in k.
In view of (3.45) and recalling the definition of the Burgers vector, we may identify
the difference vector X(0) —x(1) as the Burgers vector and denote it by B

To relate the Burgers vector defined above to the plastic deformation we proceed
with the following calculations:

B(%,t,) = x(0,1,) —X(1, 4,)

f
f d/\

f Fx (3.46)

where in writing (3.46), use has been made of (3.42),. The last integral in (3.46) can
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be transformed into a line integral over %, in x,, with the help of (3.4); and, after
recalling the definition of plastic strain in (3.8), yields

B=—§ G,dX. (3.47)
%
Applying Stokes’s theorem to the line integral in (3.47) we obtain
B(%) = J a[N]d4, (3.48)
o
where we have set
a = —(curl G,)". (3.49)

In (3.48)—(3.49), d4 is an area element, &/ is any surface area bounded by %, and
N is the positive normal to &/ determined by a right-hand screw rule. Also, ‘curl’
stands for the curl operator defined by

curl G, [a] = curl [G} a] = V x (G} a) (3.50)

for any arbitrary vector a, where V = 0/0X and operates on the vector (G} a). Then,
with a set equal to E, the components of the second-order tensor a referred to the
appropriate orthonormal basis reads as

— P p—
oyp = €xpy g,y ¢ =0t,4pE, ® Ep,

where G%, denotes the components of G, and egp, are the components of the
permutation symbol.

The variable a defined by (3.49) will be called the relative dislocation density tensor,
while the vector a[/N] (which occurs in the integrand of (3.48)) represents Burgers
vector per unit area of the dislocations crossing a surface in x, with positive normal
N. Other authors, notably Eshelby (1956) and Bilby (1960), have applied Stokes’s
theorem to an expression analogous to (3.46) and obtained a measure of the
dislocation density per unit area in the current configuration x in terms of the
gradient of ,F! with respect to the current position x. It should be emphasized that
our definition of the dislocation density (which differs from that in the existing
literature, e.g. Eshelby 1956 and Bilby 1960) has the following features: (i) it is
directly related to the gradient of plastic deformation G ,; (ii) it is measured per unit
area in the reference configuration x,, and relative to the reference lattice structure
(here the director triad D ,); and (iii) it permits the possibility that r, itself may
possess dislocations, as encountered with ‘as grown’ crystals.

Before closing this subsection, it is desirable to comment on the relationship
between our kinematical results and that usually discussed in the context of non-
riemannian geometry. Several authors, beginning with Bilby et al. (1955) have
developed a purely geometrical description of dislocations by using the methods of
differential geometry of non-riemannian manifolds. In particular, they have shown
that the torsion tensor of the manifold may be identified with the dislocation density
per unit area in the current configuration x. Moreover, Bilby et al. (1957) have
considered the closely related concept of rate of change (or ‘increment’) of
dislocation density during deformation, while several authors (Kondo 1964 ; DeWit
1981 ; Kroner 1958, 1981) have attempted to develop a purely geometrical theory of
imperfections in a crystal lattice.

All of the foregoing efforts have concentrated on using the gradient of ,F as the
‘connection coefficient’ of a non-riemannian manifold (Bilby 1960) and relating the

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

442 P. M. Naghdi and A. R. Srinivasa

torsion and curvature tensors to the defectiveness of the crystals. In this regard,
mention may be made of a recent paper by Davini & Parry (1991) who have discussed
certain kinematical aspects of defects in a crystal and, under the restriction of defect-
preserving transformation (corresponding to only elastic processes using the
terminology of the present paper), have provided a list of invariants for defective
crystals.

Geometrical interpretations and results of the kind mentioned in the preceding
paragraph are clearly useful since the presence of defects such as impurities, which
alter the structure of the lattice, may block the passage of dislocations and hence
contribute to the work-hardening effects (see in this connection, Hirth & Lothe
(1982, pp. 639-697) for a discussion of the interactions between dislocations and
impurity atoms and Van Bueren (1961, pp. 182-219) for a description of hardening
as a result of such interactions). With this background and in view of the results
obtained in this subsection, Grad G, may be used as a measure of the defectiveness
in a crystal. Moreover, in line with remarks made in the last two paragraphs, Grad
G, may be used to define the ‘connection coefficients” of a non-riemannian manifold,
but an explicit introduction of the non-riemannian manifold is not necessary for the
purposes of the present paper.

(d) Invariance of plastic deformation tensor and dislocation density

We recall that as a consequence of the motion specified by the vector function g,
the material point X in # occupies the place x in the configuration x. Under another
motion, which differs from the given motion only by a superposed rigid body motion
(henceforth referred to as skBM), the material point X moves to x* while the directors
d, move to d}; in the configuration x* at time t" = {+a, with a being a constant. It
is well known that under such motions, x*, d'; and F* transform as

xt=a+Qx, d)=0Qd, F"=QF, (3.51)

where a is a vector function of time and Q is a proper orthogonal tensor function of
time and hence satisfies the conditions:

QOT=0"Q0 =1 det[Q]=1. (3.52)

It follows from (3.51), that under srkBm the lattice deformation tensor ,F defined

by (3.6) transforms as
F*=Q,F, (3.53)

so that the right-hand side of (3.8) is
(FF) = (QF) QF) = F'QQF = FF.

Hence, under sgBM, the plastic deformation G, and the relative dislocation density
tensor transform as
G, =G, o =a (3.54)

p?

4. The basic balance laws of the dynamical theory and related results

It is convenient at this point in our development to define certain additional
quantities which occur in the balance laws to be introduced presently. The mass
density p, = po(X) and p = p(X,t) of # in the configurations k, and K respectively;
the stress vector x# = xt(X,t; N) and the director stress vectors zm* each measured
per unit area with an outward unit normal N in the reference configuration; the
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external body force b = b(X,t) and the director body forces £4 = £4(X,t) each per
unit mass in the reference configuration; and the intrinsic director forces k4 =
rk*(X,t) per unit volume in the reference configuration. We also assume that the
quantities x4, £4 and zk* make no contributions to the moment of momentum. For
convenience, we also define here the following set of second-order tensors, namely

L=¢®D, K=pk"®D, M= m'®D,, (4.1)

which will be utilized later in this section instead of £4, zk4, m4.

Motivated by considerations at the microscopic level regarding the identification
of the material point x with the centre of mass of the microscopic or submicroscopic
region (see §2) and recalling from §3 that at a given material point the velocity of
the lattice vector at time ¢ in excess of that of the material line element which
instantaneously coincides with it is given by the expressions (3.21), we assume that
the kinetic energy per unit mass associated with the particle X has the form

k =3vv+Y*B(,FL,D,) (,FL,Dy)}, (4.2)

where in writing the above we have also used the definition (3.36),. With the help of
the properties of inner product between tensors, the above expression for the kinetic
energy k can be rewritten in a more convenient form as

Kk =Hv v+G, (Y[G,))}, (4.3)
where the inertia tensor coefficient % is defined by

Y =%pcpEs ®Ep® E; ® Ep, (4.4)
Y=Y*3D,® Dy, = YyyEy @ Ey, '
and where

Yapcp = Ycpas = fOAc(GEI)BM(G;—)l)DN Yyun, Yun=Yyu- (4.5)
It should be noted that consistent with the identification made previously for x as
the centre of a microscopic region and d, with the lattice vectors at x, no coupling
term involving Gp [v] is admitted in the macroscopic kinetic energy in (4.1). Support
for this feature of the kinetic energy can be readily provided through a derivation
from a balance of energy, together with the invariance requirements under
superposed rigid body motions, which demonstrates that this form of the kinetic
energy (i.e. the absence of the coupling term involving Gp [v]) is consistent with
(3.54), the invariance conditions (4.18), , below, and the invariance property of the
balance of energy under superposed rigid body motions. The same derivation also
provides the fact that the consequence of the moment of momentum principle does
not include any contributions from the director fields and the associated kinetical
quantities (xK, g M). The details of such a derivation are not included here and are
similar to those given by Naghdi (1972, pp. 484-486) in the context of the three-
dimensional theory of classical continuum mechanics.
In view of (4.3), we define the momentum per unit mass corresponding to the
velocity v and the director momentum per unit mass associated with Gp by

Ok /0v = v, aK/aGp = @/[Gp]. (4.6)

Consistent with the identification of x and d, with corresponding quantities in §2, we
may regard the magnitude of the ordinary inertia coefficient in (4.6), to be simply the
magnitude of the inertia coefficients which this microscopic region would have had
if no permanent deformation had occurred. The magnitude of the director inertia in
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(4.6), may then be interpreted as the magnitude of the additional inertia arising from
the kinetic energy of the microscopic particles surrounding the centre of mass of this
region which contribute to the permanent deformation processes taking place.
Clearly then, these two parts may be viewed as representing the magnitudes of the
ordinary and director kinetic energy, respectively, of the macroscopic particle X.
Also, the physical dimensions of p,, zt, and b are, respectively,

[ML73), [ML™T*), [LT™?, (4.7)

where the symbols [L], [M] and [T'] stand for the physical dimensions of length, mass
and time. The physical dimensions of the vector fields gm?, 4, zk* depends on the
dimensions of d,. As seen in §2, the vectors d, have the dimensions of length and
hence zm* and £4 will have the same dimensions of z¢ and b in (4.7) while zk* have
the dimension of [ML17T72] (it should be noted that if d, is specified to be
dimensionless, then the physical dimension of gm will be [ML~?] corresponding to
a physical dimension of a stress couple). In view of this discussion concerning the
physical dimensions of {£4, 3k, gm*}, the physical dimensions of the corresponding
tensorial variables defined by (4.1) are:

[L]=[L2T7), [pK]=[xM]=[MT"*]. (4.8)

The balance laws utilized here, aside from being in lagrangian form, consist of mass
balance and the ordinary momentum balance laws of classical continuum mechanics
supplemented by one other, which is associated with the kinematical variable Gp and
which will be discussed presently. We recall here that the basic ingredients that enter
the balance law associated with Gp is assumed to make no contributions to the
balance of moment of momentum. Thus, we first record the local forms of the
ordinary conservation laws for mass, momentum and moment of momentum which

hold for every material point in the reference configuration x,, i.e.
po=pJ, po¥=p,b+divP, PF'=FP" _t=PN. (4.9)

In (4.9), P is the first (non-symmetric Piola—Kirchhoff stress tensor, the notation
‘div’ stands for the divergence operator with respect to X, N denotes the outward
unit normal to any surface in &, and the remaining variables were defined earlier in
this section.

The additional balance law for any part & of the body % in k, may be stated in
words as

associated with the rate from (and maintaining) the

rate of change of momentum all forces arising
} = { } (4.10)
of plastic deformation effect of plastic deformation

Then, in terms of the definitions introduced in (4.1), the statement for the rate of
change of momentum of plastic deformation G, embodied in (4.10) for any part of
the body occupying a region #, bounded by a closed surface 0%, in k,, as a tensor
equation, is

d .
&J‘q) po@[Gp]dV=Jq) (pog—RK)dV+L@ rMdA, (4.11)

where dV is an element of volume and d4 an element of area in the fixed reference
configuration x,,.
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By usual procedures and under suitable continuity assumptions, it follows from
(4.11) that -

poY[Gyl = py L—K, (4.12)
where for later convenience we have also introduced the abbreviation L by
poL =p,L+divy M, M= MN)|. (4.13)

In (4.12)—(4.13), the third-order tensor z.#is the director stress (associated with the
lattice directors or equivalently plastic strain G,) and is measured per unit area of
surfaces in x,. It should also be noted that the relationship (4.13), is a consequence
of a standard tetrahedron argument and that the last term in (4.13), represents

div gl = g M ypc,c E4 ® Eg, (4.14)

where g 45 are the components of . #referred to the basis vectors E . It is natural
to raise a question here regarding the physical interpretations that may be assigned
to the various kinetical quantities that occur in the basic differential equations of
motion (4.9), and (4.12)—(4.13). In the case of the stress vector zt and consequently
the stress tensor P in (4.9), an a priori interpretation can be assigned which is
meaningful for all media irrespective of the relevant applicability of the classical
continuum mechanics. The same is not true for the other kinetical ingredient (zk*,
rm?) and consequently (xK,gM) which occur in (4.12)—(4.13). The latter depend
upon the physical nature of the problem and the choice of the additional kinematical
variable such as G,,. Thus we defer further remarks on this point until the end of §6a,
where the main features of the constitutive equations are discussed.

Within the framework of the macroscopic theory under discussion, the expression
for the mechanical power P can be reduced to

P=S8-E+ K G, + M grad G, (4.15)

where the notation ‘grad’ stands for the gradient operator with respect to X and S
is the second (symmetric) Piola—Kirchhoff stress defined through

P=FS, §=5" (4.16)

We have previously indicated that under srkm, the place x, the directors d, and
the tensor G, transform by (3.51), and (3.54);,. Now all the local conservation
equations in (4.9) and (4.13) and the various fields occurring in these equations
should be properly invariant under (3.51),: For example, as is well known, the
stresses P and S transform according to the formulae

Pr=0P, S*=S8. (4.17)
Supplementary to (4.17), we stipulate the invariance properties
jll = g M, K" =K. (4.18)

This completes our discussion of the balance laws appropriate for the description
of the motion of a crystal lattice. The balance laws (4.9)—-(4.12) must be supplemented
by constitutive equations for the functions S 3K, .4 and the inertia coefficient Y.

5. A general constrained theory for materials possessing an elastic range

Our main goal in this section is to construct a constrained theory of inelastic
behaviour applicable to a wide range of materials, including single crystals. Such a
constrained theory must necessarily be compatible with the balance laws in §4, which
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must hold for all processes. For clarity’s sake, we recall that the processes
represented by the basic kinematical variables (see (3.4), and (3.9)—(3.10)), i.e. (F, ,F)
or equivalently (F, G,), have already been restricted (or ‘constrained’) through the
notion of mechanical reversibility between the configurations x and & (see figure 1)
without an explicit specification of material behaviour on whose response a
constraint may also be imposed.

We observe that for the inelastic behaviour of materials of interest here (e.g. ‘rate-
independent’ elastic—plastic or ‘rate-dependent’ elastic—viscoplastic), there always
exists an elastic range in which the plastic strain is constant or, more precisely, the
rate of plastic strain vanishes. (For example, any process starting from rest is
initially elastic and hence the ‘boundary of the elastic range’ delineates the elastic
region.) In the light of these remarks, one may view the elastic behaviour as a special
process of an elastic—plastic material for which

Gp =0 during the reversible elastic process. (5.1)

Since elastic—plastic (or elastic—viscoplastic) materials exhibit elastic behaviour for
part of their response, the condition (5.1) must necessarily be regarded as a
constraint in the elastic range, the domain of which is not necessarily fixed.

(@) Development of a constrained theory

In previous developments of constrained theories within the scope of Cosserat
continua or directed media (see Green et al. 1970, §6; Naghdi 1982, §§6 and 12), the
constraints are assumed to hold for all possible motions and the material response is
assumed to be capable of generating the necessary forces — called the constraint
response — to maintain the constraint. These constraint forces may be arbitrarily
large. In the present context, however, the constraint (5.1) is regarded to hold only
during a part of the process and this requires the notion of a constrained region. Thus
we assume that the constraint (5.1) is maintained as long as the constraint forces lie
within a bounded closed region in the space of constraint forces, so that the
constraint forces associated with (5.1) cannot be arbitrarily large.

In view of the definitions (3.6), , for the lattice deformation tensor and the
relationship (3.8) between the plastic strain and the lattice deformation tensor (see
also (3.9)), the triad of directors d, are fully constrained during elastic deformations
consistent with (5.1).

We now proceed to determine the effect of the constraint (5.1) on the kinetical
quantities which enter the equations of motion (4.9), and (4.12) and the mechanical
power (4.15). Thus, we assume that each of the functions (S, 3 K, z.#) are determined
to within an additive constraint response so that each response function such as S
can be written as

() = Oina+( )deta (5.2)

where the determinate parts ()4, are to be specified by constitutive equations and
the indeterminate parts ();,q are arbitrary functions of position and time and are
workless. Recalling (4.15), the expression representing the worklessness of the
indeterminate parts is given by

(S)ina E+ (2K)ina Gp+ (retl)ing " grad G, = 0. (5.3)

The indeterminate parts of the kinetical quantities are in general determined from
(56.3) and the constraint equations in terms of Lagrange multipliers. (For a more
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detailed account of constraints in the context of Cosserat continua, see §6 of Green
et al. (1970).)

Since (5.3) must hold for every motion satisfying (5.1), by standard arguments we
may conclude that

(gK)ina = arbitrary finite, (S)q =0, (g)inga=0. (5.4)

In the present development, it is easily seen that the value of (3 K);,4 can be obtained
from (4.12), once constitutive equations for (g K)o and (g#)q0; are known, i.e.

(2K)ina = po L +div (gell) g1 — (K get- (5.5)

It should be emphasized that the constraint responses (5.4) and (5.5), as well as (5.1),
hold only during elastic processes.

(b) Existence of a yield surface

Preparatory to a general discussion of constitutive equations in §6, it is desirable
to discuss the nature of some of the independent variables which may be chosen for
the arguments of the various response functions, including a function whose domain
represents the elastic range. It is convenient at this point to specify the abbreviations
U and W for the following two sets of variables:

u“=(EW) W=(G,gradG,). (5.6)

It should also be noted that the third-order tensor grad G, can be decomposed
uniquely into a symmetric part and a skew-symmetric part according to:

grad Gp = GgB,CEA ®E;® E, GﬁB,C = (GEB,C)sym—l— (GEB,C)skew’ (5.7)

where the notation G% ; stands for the components of G, and a comma in (5.7), stands
for partial differentiation with respect to reference position X,. Also the symmetric
and skew-symmetric parts of G%, . in (5.7) are defined as

(Ggsc)sym = %(GgB,C+G%B,A)> (Ggls,c)skew = %(GgB,C_G%B,A)' (5.8)

Associated with (grad G)g., is a second-order ‘axial tensor’ defined by (3.50),
which is directly related to the dislocation density a defined by (3.49).

Given the foregoing background, the use of only the variables % defined by (5.6)
will suffice for our present purpose. We observe, however, that the inclusions of
additional kinematical variables (should this become desirable) at a future occasion
will not alter the basic structure of the theory presented here.

We now admit the existence of a smooth scalar-valued yield (or loading) function
@ such that for fixed values of # the equation

P((7K)ina: %) =0 (5.9)

represents a closed orientable hypersurface 04" of dimensions eight, enclosing an
open region A in the nine-dimensional ; K-space (see figure 2). The hypersurface 0.4
will be called the yield surface in gz K-space. In view of the ideas motivated at the
beginning of §5a, we may now stipulate that the constraint (5.1) holds as long as the
constraint response (zK);nq lies within the region enclosed by 04", so that

G, = 0= D((3K)yna: %) < 0. (5.10)

By usual continuity arguments, it follows that the condition (5.9) must be satisfied
when (3 K);,q reaches a critical value at impending plastic deformation.
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K>

o

Figure 2. A sketch of the yield surfaces 0", 0, and the elastic region @ < 0 in the nine-
dimensional pK-space. Also shown is the unit tensor p representing the direction of the rate G of
plastlc deformatlon corresponding to specified value of the response function K,; the tensor K
remains on the surface 0.4, during plastic deformation. In general, the two surfaces 04" and OJ{”
do not coincide and there is a jump in the value of ;K (given by (6.30)) at the initiation of yieldA
The two surfaces become coincident if K is a continuous function of time or if the inertia term in
the balance equation (4.12) vanishes.

We may now construct a yield function ¢ in the space of our basic kinematical
variables corresponding to @ in y K-space. Thus, from the left-hand side of (5.9) and
using also (5.5), an expression for ¢ can be found through the formula

D((3K)ina, ) = P(L— K(U),U) = 9 L), (5.11)

where K is the constitutive response function for K at Gp = 0 which depends on
9% and the abbreviation L is defined by (4.13). We assume that for fixed values of
(#", L), the equation -

g ;L) =0 (5.12)

represents a closed orientable five-dimensional hypersurface which encloses an open
region in strain space. We refer to (5.12) as the yield surface in the six-dimensional
space of strain.

6. Constitutive equations for the macroscopic theory

We are concerned here with the development of constitutive equations and their
restrictions in the context of the purely mechanical constrained theory of §5 for
inelastic behaviour of materials which take into account the microstructural effects,
both at microscopic and submicroscopic levels. Before embarking on the main
objective, it is desirable to dispose of some background information pertaining to the
type of restrictions that may be imposed on the constitutive response functions. Such
restrictions in a purely mechanical theory can be effected in the context of more
general thermomechanical results after specialization to the isothermal case. With
this in mind, we appeal to the thermomechanical formulation of Green & Naghdi
(1977), who postulated an entropy balance law as part of their procedure. (We may
recall here that the entropy balance was originally postulated with only a limited
motivation (based on the form of the energy equation for an inviseid fluid) ; however,
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in a recent paper (Green & Naghdi 1991), it is shown that a general balance of
entropy is consistent with, and can be derived from, a general balance of energy.)
In the procedure of Green & Naghdi, the equation for balance of energy after
combination with the balance of entropy and elimination of external heat supply and
body force terms takes a reduced form which is then regarded as an identity for all
processes. The lagrangian form of this reduced energy equation for the special case
of isothermal deformation (temperature @ = const.) of interest here assumes the form

P =pyr+p, E—HH[G,]) G, (6.1)

where the mechanical power P is defined by (4.15), i is specific Helmholtz free energy
and § is a measure of energy dissipation arising from an internal generation of
entropy. (The notation & here corresponds to 0§ of Green & Naghdi (1977, 1991).)

(@) Constitutive equations for the constrained theory

We begin the developments of the constitutive response functions within the
framework of the constrained theory discussed in §5 by introducing a scalar y and
a unit tensor p which designate, respectively, the magnitude and direction of the
plastic strain rate Gp defined by

7=1G,l, p=G,/IG,l (6.2)
where the notation | ‘| stands for the norm. We note that

while p is arbitrary.
In view of the presence of the last term on the right-hand side of the reduced

energy equation (6.1), it is convenient to introduce a new tensor-valued variable K
defined by

K = (3K)gor +300(#[G,]) G, (6.4)

{S, pA} (6.5)

and the scalar i depend on the set of variables % defined by (5.6), and stipulate that
the constitutive assumption for K and &, in addition to the variables (5.6),, depend
also on the variables (y, p) defined by (6.2). For later reference, it is convenient to
specifically indicate the constitutive forms of i, K and § as:

y=y) (6.6)
and K=K,y,p), E=EU,v.p) (6.7)
We now introduce the constitutive assumptions such as (6.6)—(6.7) and those for

the variables (6.5) into the reduced energy equation (6.1) and record the resulting
equation in terms of various response functions in the form

(S —py O JOE) - E+ (nlll— p, 0y /O grad G,) - grad G, + [ — p, 0 /3G, ] G, — £ = 0.
(6.8)

The above equation, by the procedure of Green & Naghdi (1977), must be satisfied
identically for all processes and will place restrictions on the functional dependence
of the constitutive response functions.

Consider now the implication of (6.8) for special processes during which the
condition (5.1) holds, i.e. for processes associated with the elastic range of

We also assume that

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

///\ \\
A

/\
'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

A\
/

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

450 P. M. Naghdi and A. R. Srinivasa

elastic—plastic materials. Thus, for processes in which Gp = 0 (or equivalently v = 0
by (6.3)), the third term in (6.8) vanishes and (6.8) reduces to

S—p, E)zﬁ/aE) E+ (gl p, a:,/}/a grad G- grad G'
—&@,0,p) =0 when (5.1) holds, (6.9)
(E, grad G,) (6.10)

and with coefficient response functions (S, .4, 1/;) which are independent of the rate
quantities (6.10). Since (6.9) must hold for every choice of the variables (6.10), by
standard arguments we conclude that

é(%,O,p) =0, wheny =0 or when (5.1) holds (6.11)
S = po 0 JOE, qMl= p,0if/dgrad G,. (6.12)

Recalling our earlier remark (§3, following (3.8)) concerning the identification of
G,, we are now in a position to verify that for the fairly general constitutive
equations discussed here the processes for which the lattice vectors behave as
material line elements are indeed reversible ; and hence the tensor G, defined by (3.8)
can be identified as plastic deformation. For this purpose, we observe that the
conclusion (6.11) for the vanishing of the rate of energy dissipation in the elastic
range of the material behaviour is consistent with our constitutive assumptions and,
of course, holds only when y defined by (6.2), vanishes. Remembering that the
response functions for (S, .4, ) are independent of Gp (and hence independent of
v,p), it follows from continuity arguments between the elastic range and the
elastic—plastic range that the results (6.12), , holds for all processes, including those
during which G #0.

Returning to (6 8) and after invoking the results (6.12), ,, we obtain an expression
for g in terms of the response functions K and v,b ie.

§= K—poaw/a ol Gy (6.13)
Motivated by the above expression for the rate of energy dissipation, the response

function for K can be expressed in a more informative form. To this end, we define
a new function K through

which is linear in the variables

and that

K—p, 0 /0G, = K@, y.p) (6.14)
and for ease of writing also introduce the notation
o /G, = K\ (U). (6.15)
Next, we define a function K,(%) by

K,(.p)=K,0,p), 6.16
and further set . o p)~ ( pz ( :
Ky(U.v.p) = KU,y p)— KU, p). (6.17)

Then, by (6.17) and (6.14)—-(6.15), K in (6.7) can be expressed as
KU, y.p) =K, U)+R,U.p)+ K, ,7.p). 6.18
Provided that .. p) = K, (U) + Ko, p) + KWy p) (6.18)
K,(%,0,p) =0. (6.19)

The truth of the condition (6.19) can be easily verified from (6.18) and (6.16) when
these are evaluated at zero value of . With (6.18) and (6.15), the rate of energy
dissipation (6.13) can be rewritten as

£=(K,+K,) G, (6.20)
Phil. Trans. R. Soc. Lond. A (1993)
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The value of K, = K,(%, p) is undefined at Gp = 0. However, since G'p = 0 represents
the constraint (5.1) with the constraint response (5.5), for definiteness (and without
loss in generality), wet set

K,=0 whenever Gp =0. (6.21)

The derived representation (6.18) for the second-order tensor K due to the intrinsic
force per unit volume pk* maintaining the movement of dislocations consists of the
sum of three parts. The first of these, namely K,, represents the effect of the second-
order tensor Kin the elastic range of the material, while the second term on the right-
hand side of (6.18) depends only on the direction of G (and not on its magnitude)
and the third term depends on both the magnitude and direction of G Although
there are no direct analogies between K, and K, with known constltutlve results in
standard formulations of plasticity and v1scoplast101ty of the past 50 years, some
comments here regarding the nature of K, and K, may be useful. The function K,
when inverted yields an expression which is somewhat analogous to the constltutlve
equation for the plastic strain rate in the so-called ‘rate-independent’ theory of
elastic—plastic materials (see §5 of Naghdi 1990). Moreover, the function K,, which
depends explicitly on y and which in accordance with (6.19) vanishes when vy tends
to zero, may be regarded as a viscoplastic response. In the context of a general
discussion of elastic—viscoplastic materials, however, all three response functions on
the right-hand side of (6.18) must be present. With the effect of KS suppressed, (6.18)
corresponds to that in (the more usual) rate-independent elastic—plastic behaviour.

Before further consideration of related developments in this section, it is desirable
to summarize the nature of the results in this subsection: The main constitutive
results obtained are the constitutive equations for the stresses (S, z.#) given by
(6.12), ,, the constitutive equations for the intrinsic second-order tensor K given by
(6.18) and the expression for the rate of energy dissipation (6.20). These constitutive
equations now enable us to elaborate on the physical interpretations that may be
associated with the variables (K, z.#) in (6.18) and (6.12),, where K has emerged
from the original x K (and hence k) through (6.4) and (4.1), while .4 has merged
from the original M (and hence zm*) through (4.13), and (4.1),. In particular, K,
(which is a part of K in (6.18)) can be interpreted as the elastic force on the lattice
defects by the surrounding material, whereas K,+ K in (6.18) represents the effect
of dissipative resistance of the lattice vectors to plastic deformation. In view of the
constitutive results (6.12),, r.# may be associated with the increase in the core
energy of the defect (here the dislocation), i.e. the energy stored in the core of the
defect at the atomic level with increasing defect density. With this interpretation,
and observing that G, is dimensionless, z M may be regarded as representing a
‘stress-dipole’ that permits the entry of a new defect into the crystal through its
boundaries. In this connection, however, we note that the core energy associated
with the defects is usually small and is frequently neglected in most calculations.

(b) Geometrical interpretation of response function K, in (6.18)

In a nine-dimensional euclidean Gp-spaee, the set of all possible values of the unit
tensor p defined by (6.2), may be represented by points on the surface of a
hypersphere of unit radius with its centre at origin. Such a surface may be
parametrized by eight parameters ¢, (i = 1,2, ...,8), using, for example, the method
of stereographic projection (see Levi-Civita 1926, pp. 240-241) and is similar to that
for the parametrization of a sphere in a three-dimensional euclidean space by two
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GeA

%

) A G > E

Figure 3. A schematic (two-dimensional) plot in ¢ ~& plane corresponding to the path of a material
point in the space of the Cartesian product E® G,,. Its projection onto the strain axis K represents
a path C, in the six-dimensional strain space, while the projection onto the plastic deformation axis
G, represents a path C, in the nine-dimensional G, space. The elastic range in this plot during the
time interval [t,,¢,] is represented by the segment OA along the £-axis.

stereographic angles. As a result of this parametrization, any direction p of Gp may
be specified by the values of the parameters ¢, so that p = p(¢d). Then, the
response function K, in (6.18) may be regarded as a different function of % and ¢
and we may write . .

K, = Kz(%,ﬁ(¢(i))) =K\(U, ). (6.22)

Since the response of K, for fixed values of % depends only on ¢, the range of K,
in (6.22), represents an orientable closed hypersurface of dimension eight in the nine-
dimensional euclidean K,-space. Thus, we admit the existence of a function @,(#%, K,)
such that the equation

DU, K,) =0 (6.23)

for fixed values of % represents a hypersurface 0.4, of dimension eight in the nine-
dimensional euclidean K,-space. The values of K, which lie on 0.4, are all elements
of the range of K, (or K,). The surface @, may be called the loading surface since the
response K, always lies on this surface during processes that give rise to plastic
deformations.

A particularly simple case arises when (6.22), involving K, for fixed values of the
variables % is a one-one and differentiable function of ¢ . Then, by a theorem in
differential topology (Guillemin & Pollack 1974, pp. 13—-18 and the theorem on
p. 17), the range of K, is a smooth orientable compact hypersurface. (For some
purposes, for example in the context of crystal plasticity, the ‘one—one’ or injective
assumption may be too restrictive and must be relaxed but we do not discuss this
issue in the present paper.)

Consider now a process at a material point X, in the initial configuration x, of a
single crystal. Let the strain trajectory (resulting from the motion y) in strain space
be denoted by (', and designate by curve €, the deformation of the directors at X;
in a nine-dimensional euclidean G, -space (see figure 3). The values of grad G, as a
function of time must also be specified for a complete description of the process, but
for the time being we consider only C, and C,. We suppose that the deformation
starting from time ¢ = ¢, is initially elastic so that for ¢ €[¢,,¢,] the plastic strain rate
vanishes in accordance with (5.1). For times ¢ > ¢, plastic deformation may take
place, so that

G, #0 for t>t,. (6.24)

Phil. Trans. R. Soc. Lond. A (1993)
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By (5.1) and the discussion of the constraint in §5, it is clear that the constraint
response (g K);,q given by (5.5) satisfies the condition (5.9) at t =+¢,:

D[ (xK(t))ina: #] = 0. (6.25)
From (6.24) and (6.16) for K, follows that
K,t>t) =K, U1t >t), pt>t)). (6.26)
Moreover, (6.26) satisfies
D, (U, K,(t >t)) =0. (6.27)

In view of the fact that the surfaces 04" and 0.%; do not coincide (figure 2), there
will be a jump in the value of G at time ¢ = ¢,. ThlS may be seen from the fact that
as ¢ tends to ¢; from below,

lim G, = 0. (6.28)

£t

However, as t tends to ¢, from above, the limit of the balance law (4.12) yields

Gl Y(ty) = —lim K, + py L (1) + div wt,) — K, (1), (6.29)
tlty
where we have assumed that & is continuous at ¢ =¢,.
Next, after substituting for the last three terms on the right-hand side of (6.29)
from (5.5) we have .
Gpltltl Y(t,) = [rK(ty)]ing —lim Ky(?). (6.30)
tlt
Remembering that the coefficient Y is symmetric positive definite and hence
invertible, from comparison of (6.30) and (6.28) follows the fact that G is not
continuous at ¢ = ¢, unless the right-hand side of (6.30) vanishes, i.e.

[&K(t)]ina = lim Ky(2). (6.31)

tlt,

However, since [yK];,q and K, must respectively satisfy (6.25) and (6.27), we also

have
D(gK)ina, | = Py (xK)ina> X ]- (6.32)

According to (6.32), the two surfaces 04" and 0%, coincide and there is no distinction
between the yield and loading surfaces when (6.31) holds.

(¢) A general procedure for the determination of plastic deformation and the material
response

In the development of the constitutive equations carried out in the context of the
constrained theory, it was implicitly assumed that both the strain and plastic
deformation trajectories C, and (), (see §6b) are known so that plastic deformation
begins simply when G # () However in almost all cases of interest, loading hlstory
or equivalently the qtraln trajectory C, is prescribed and part of the solution is
necessarily concerned with finding the plastic deformation G,. Here we outline a
procedure by means of which the basic theory and the constitutive equations can be
utilized to determine the plastic deformation trajectory ¢ and subsequently the
material response. Although not essential, for simplicity’s sake we assume that the
second-order tensor L defined by (4.13) is zero and that initially G vanishes so that
initially @ < 0.

Phil. Trans. R. Soc. Lond. A (1993)
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With L = 0, the yield function ¢ in strain space can be displayed as
g(E W) =0, (6.33)

where the variables #~ are defined by (5.6),. In anticipation of certain results (usually
referred to as loading criteria), it is convenient to introduce here a scalar § at every
point on the yield surface (6.33) defined by

- _ % 9

i=3g E+agr dG rad (6.34)
In the absence of dependence of g on grad G, § is identical to § = (3g/0E)- E which
has been utilized in the strain-space formulation of plasticity for the past 15 years
(see §5 of Naghdi 1990).

Now the system of governing equations consists of the mass conservation, the
ordinary linear momentum and the local balance of director momenta in the form
(4.12) with L = 0, and the constitutive results for S and K given by (6.12), and (6.18).
Thus, at a given material point on a strain trajectory C,, let the initial conditions at
time ¢ = 0 for plastic deformation G,(0) and grad G,(0) be prescribed. Then, the
following procedure may be used for the determination of the response of the
material and the plastic deformation trajectory:

1. As the loading program is carried out, the initial response is purely elastic and
no plastic deformation occurs until the yield condition (6.33) is satisfied.

2. Suppose that the condition (6.33) is first satisfied at time ¢ = ¢,, assume that at
this instant (¢ = t,) plastic deformation does not set in and then examine whether or
not this is compatible with the constraint condition (5.1) and the constrained theory
of §5. To this end, we consider the material derivative of (6.33) evaluated at ¢ = ¢, and
remembering that the plastic strain does not begin at ¢t = ¢;, we arrive at

_ 9 dg I
E A = 6
glt tl aE +agrad Ep gra‘d Ep g> ( 35)
where in writing the right-hand side of (6.35) we have used the notation § defined by
(6.34). We further observe that if § <0, then in the limit as At tends to zero from
above
lim {9|51+At = g|t1+g|t=tl At = glt=t1 Aty <0. (6.36)
Atlo
3. Given that §|,_, = 0, then it should be clear from (6.36) that gl; ,», must also be
zero. This corresponds to the O trajectory moving along the hyperplane tangent to
the yield surface and can be V1ewed as the analogue of the condition for ‘neutral
loading’ in standard developments of plasticity for which g =0, § = 0.
Clearly, as long as § <0, the assumption of absence of plastic deformation is
compatible with the constraint condition (5.1), whereas § > 0 is not compatible with
(5.1). Thus we may conclude that loading takes place only if

g=0, §>0 -{forloading. 6.37)
g

4. Once plastic deformation is initiated, the various response functions may be
calculated from their appropriate constitutive equations; and then the director
momenta equation (4.12) with L =0 may be integrated to obtain the plastic
deformation trajectory C, as a function of time.
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5. The evolution of plastic deformation continues until Gp vanishes again. Then,
the crystal will sustain additional purely elastic deformation until the loading
condition (6.37) is again satisfied.

An examination of the constitutive equations for S and K reveals that when
Gp # 0, the yield condition (6.33) does not necessarily need to be satisfied so that
the so-called consistency condition in standard plasticity developments does not
arise here. Further, even though in §6& the range of the response function K, was
delineated by the hypersurface 0.4, (or 04 in view of (6.32)), the loading condition
(6.37) naturally arises in the context of strain space.

Before closing this section, it may be emphasized that the general development of
the material response in §6 is rate-dependent in the sense that K (but not .S and .#)
depends on the rate of G,,. Further, unlike 3z K, the ordinary stress tensor .S does not
play a role in the determination of the elastic domain and hence the ideas associated
with the existence of the yield function @. However, under special or more restrictive
constitutive assumptions, the response function for K can be related to S and then
the role of the latter would be similar to that of standard developments in plasticity.
These topics and related ones will be discussed in Part I1.

The results reported here were obtained in the course of research supported by the Solid Mechanics
Program of the U.S. Office of Naval Research under contract N00014-90-J-1959, R&T 4324-436
with the University of California at Berkeley.

Appendix A

The purposes of this appendix is to collect a few quotations from two sources on
crystal dislocations and their continuous distributions (arranged in alphabetical
order by names of the authors) to provide support for the model proposed in the
paper. For each listing after indicating the source, before the actual quotation, we list
the page number, paragraph, and the relevant lines of quotation.

Bilby (1960)
(@) p. 334, para. 1, lines 9-19.

In this process not only does the lattice undergo in general a local rotation and pure strain,
but also a change in shape of the crystal, as measured by a network scribed on it, takes
place. This shape deformation may, in fact, be regarded as composed of two separate
changes of shape; firstly, that due to changes in the lattice (the lattice deformation) and
secondly, that due to slip and climb processes (which do not change the lattice) caused by
the introduction and movement of dislocations. The latter deformation we call the
dislocation deformation. The shape, lattice and dislocation deformations may be derived and
analysed for the continuously dislocated crystal, and we thus obtain a description of the
plastic deformation of a continuum in terms of dislocation theory.

(b) p. 385, para. 1, lines 10-13

...we have focused attention on a real solid deforming in ordinary space, that is, on the
simultaneous operation of the lattice and dislocation deformations, combining to give the
shape change.

(¢) p. 335, para. 3, lines 4-7.

A Burgers circuit is a closed sequence of lattice steps in the real crystal. The corresponding
steps, repeated in the perfect lattice, form an associated path which does not, in general,
close, but begins at a lattice point S and end at a lattice point F.
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Nabbaro (1987)
(@) p. 566, para. 3, lines 1-6.

This picture is less general than that of a Cosserat continuum, in which two triads of
directions are associated with each point. One triad is defined, as in our present
considerations, by the joins of a reference point in each cell to the corresponding reference
points in neighbouring cells: the other triad is a set of vectors embedded in each cell, and
transforming according to its own laws when the crystal is disturbed.

(b) p. 583, para. 3, lines 1-4.

We now consider the possibility of Cosserat stresses and their possible relation to the short
range stress fields of dislocations. Cosserat stresses are couples per unit area associated with
the internal rotations of cells... .

(¢) p. 505, para. 4, lines 4-11

The general conclusion is that several of these mechanisms introduce enough resistance to
ensure that the speed of a dislocation under stresses of the order usually applied in
experiments is considerably less than the speed of sound. Attempts have sometimes been
made to explain the contribution of dislocations to the internal friction of the material ...
in terms of one particular mechanism... . It is doubtful if the theory has reached the stage
at which such analyses can be relied upon.

Appendix B

We provide in this appendix the mathematical details that lead to the formula
(3.13) in the main text. In part of the development in §3 (between (3.28) and (3.31)),
for clarity’s sake the discussion was carried out with reference to three material line
elements and three directors at a given material point (compare (3.28), , with (3.4),
and (3.11),). However, for purposes of this appendix it will suffice to consider a single
material line element and a single director at a given material point and then
generalize the results without ambiguity to that for three directors at a given
material point.

We recall that as a consequence of the motion (3.1),, a material line element dX
(a tangent vector to a curve (' in the reference configuration ) is transformed by the
formula (3.4), into a line element dx (a tangent vector to a curve ¢ representing the
image of (' in the current configuration k) so that its time rate of change is given by
the first of (3.4),.

Consider now some vector field d = d(x, ) defined over the material points of the
body #. In view of (3.1),, d can also be expressed as a different function of the
reference position X and ¢ so that

d=d(X,1). (B1)

Focusing attention on a typical material point, X, say, we ask what are the
conditions that must be imposed on d, = d(X,,t) to render d, coincident with a
tangent vector to a material curve during a closed time interval ¢, <t < ¢,. Clearly,
if d, coincides with the tangent vector to a material curve during this interval, then
by the first of (3.4), we must have

d,=Ld, for t, <t<t, (B2)
which is a necessary condition for d; to be coincident with a tangent vector to a
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material curve. We now proceed to show that (B 2) is also sufficient. To prove
sufficiency, consider a vector D, located at X, which in terms of d, is defined here

as
D, = F'|y d, (B3)

From the material time derivative of (B 3), after using also (B 2) and Fl=_F 1L,
we have . . )
D,=F'd+F'd,=—F'Ld,+F*'Ld,=0. (B4)

It is clear from (B 4) that D, is independent of time during the time interval [¢,,,]
and hence must represent the dual of d, in the reference configuration. Further,
consider the image of the line X(A) = X, +AD,, with A as a parameter, under the
mapping (3.1),. Clearly, this image corresponds to a material curve ¢ in the current

configuration k given by
X(A,t) = 2(X,+AD,.1). (B5)

Tt is easily seen that the tangent vector tocat A = 0isd, = d(X,,t) and thus ¢ is the
desired material curve. Moreover, since D, was shown to be independent of the time
interval [¢,,¢,], it follows that ¢ is material only during this interval.

It is clear from the development in the preceding paragraph that (B 2) is both
necessary and sufficient for the vector d, to be a tangent vector to a material line.
Thus any vector satisfying the relation (B 2) may be referred to as a material linear
element in the time interval [¢,,t,]. Further, recalling the definition (3.7), for ,F, it
follows that if all the lattice directors d, (4 = 1,2, 3), at a given material point X
become coincident with material line elements during a given time interval [¢,,4,],
then each of the vectors d, satisfy a relation of the form (B 2) and we have

d,=,FD,=Ld, =L ,FD,, (B 6)

from which follows the relation ,F = L ,F during [t,,t,]. This time interval in §3 is
identified as the interval during which only reversible processes take place.
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